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Abstract. The ground-state ‘phase’ diagrams and some low-energy properties of isotropic
antiferromagnetic spin-1

2 and spin-1 chains with a next-nearest-neighbour exchangeJ2 and an
alternationδ of the nearest-neighbour exchanges have been compared for the first time using
the density matrix renormalization group method. In the spin-1

2 chain, the system is gapless for
δ = 0 andJ2 < J2c = 0.241, and is gapped everywhere else in theJ2–δ plane. AtJ2c, for
small δ, the gap increases asδα , whereα = 0.667± 0.001. 2J2 + δ = 1 is a disorder line. To
the left of this line, the structure factorS(q) peaks atqmax = π (the Ńeel ‘phase’), while to
the right,qmax decreases fromπ to π/2 (the spiral ‘phase’) asJ2 increases. We also discover
a ‘↑↑↓↓ phase’ for large values of bothJ2 and δ. In the spin-1 case, we find a line running
from a gapless point at(J2, δ) = (0, 0.25± 0.01) up to a ‘gapless’ point at(0.73± 0.005, 0)

such that the open-chain ground state is fourfold degenerate below the line and is unique above
it. There is a disorder line in this case also and it has the same equation as in the spin-1

2 case,
but the line ends at aboutδ = 0.136. Similarly to the spin-12 case, to the left of this line, the
peak in the structure factor is atπ (the Ńeel ‘phase’), while to the right of the line, it is at less
thanπ (the spiral ‘phase’). Forδ = 1, the system corresponds to a spin ladder and the system
is gapped for all values of the interchain coupling for both spin-1

2 and spin-1 ladders.

1. Introduction

Antiferromagnetic spin-1 chains received fresh attention [1–4] after Haldane conjectured
that integer-spin chains with a nearest-neighbour (nn) exchange should have a gap while
half-integer-spin chains should be gapless. This observation was based on a non-linear
sigma model (NLSM) field theory description of the low-energy excitations [5]. The NLSM
approach can be generalized to include other features such as dimerization (an alternation
δ of the nn exchanges) and a next-nearest-neighbour (nnn) exchangeJ2 [6], and it leads to
interesting predictions. For the spin-1

2 model, it predicts that the system should be gapless
for J2 < J2c for δ = 0, and should be gapped for all non-zeroδ. On the other hand,
the theory predicts that the spin-1 model should exhibit a gapless line in theJ2–δ plane
for non-zeroδ. If the nnn exchange is large enough, the spin chains go over from a Néel
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‘phase’ [7] to a spiral ‘phase’ and a different kind of NLSM field theory becomes applicable
[8, 9] which predicts a gap forall values of the spin.

While the spin-12 chain has been extensively studied using a variety of analytical and
numerical techniques [10], the corresponding spin-1 chain has been studied in much less
detail. Real spin-12 Heisenberg systems with both dimerization and frustration are now
known [11]. However, the spin-1 analogues are yet to be synthesized. In what follows,
we demonstrate that the spin-1 system exhibits a richer ‘phase’ diagram than the spin-1

2
system. It is hoped that this will provide motivation for experimental realizations of such
higher-spin systems.

Figure 1. A schematic picture of the spin chain given by equation (1).

In this paper, we present a detailed comparative study of spin-1 and spin-1
2 chains with

both dimerization and frustration in theJ2–δ plane using the density matrix renormalization
group (DMRG) method [12–14]. A major surprise which we discuss is a ‘gapless’ (to
numerical accuracy) point at(J2 = 0.73, δ = 0), in the spin-1 case, which is contrary
to the field theory expectation. We suggest that this point may be close to a critical point
which is described by a SU(3)-symmetric conformal field theory [15, 16]. We also discuss
a phase called ‘↑↑↓↓’ which arises if bothJ2 andδ are large. A particular case of this is
the spin ladder (δ = 1), and we present some numerical results for both spin-1

2 and spin-1
ladders.

2. The DMRG method and the ‘phase’ diagram

We have studied both open and periodic chains with an even number of sites governed by
the Hamiltonian

H =
∑

i

[1 − (−1)iδ]Si · Si+1 + J2

∑
i

Si · Si+2 (1)

with the limits of summation being interpreted as appropriate. We restrict our attention
to the regionJ2 > 0 and 06 δ 6 1. We study various regions in theJ2–δ plane using
the DMRG method which has proved to be very successful for one-dimensional quantum
systems [12–14, 17]. The interactions are shown schematically in figure 1.

The DMRG method allows us to study a few low-lying states in a sector with a given
value of the total spin component,Sz. The ground state is always the first (lowest-energy)
state in theSz = 0 sector. The accuracy of the DMRG method depends crucially on the
number of eigenstates of the density matrix,m, which are retained. We have worked with
m = 100 to 120 over the entireJ2–δ plane after checking that the DMRG results obtained
using these values ofm agree well with exact numerical diagonalizations of chains with up
to 16 sites for spin-1 [3] and 22 sites for spin-1

2 [18]. The chain lengths that we studied
varied from 150 sites forJ2 > 0 to 200 sites forJ2 = 0. We tracked our results as a
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Figure 2. The ‘phase’ diagram for the spin-1
2 chain in theJ2–δ plane. The line A from

(0, 0) to (0.241, 0) is gapless; the rest of the diagram is gapped. The straight line B satisfying
2J2 + δ = 1 extends all the way from(0, 1) to (0.5, 0). Across B, the position of the peak
in the structure factor decreases fromπ (the Ńeel phase) in region I to less thanπ (the spiral
phase) in region II. Across C, the peak in the structure factor decreases from greater thanπ/2
(the spiral phase) in region II toπ/2 in region III (the↑↑↓↓ ‘phase’). The two-spin correlation
function and structure factor were studied at all of the points shown in the figure.

function of N and found that convergence is reached well before 150 sites in all cases.
We find that the numerical results converge much better for open chains than for periodic
chains, a feature generic to the DMRG technique [12, 19]. Hence the data shown in figures
2 to 8 (see later), particularly for spin-1 chains, are mainly based on open-chain results.

The ‘phase’ diagrams which we obtain for spin-1
2 and spin-1 chains are shown in figures

2 and 3, respectively. In the spin-1
2 case, the system is gapless fromJ2 = 0 to J2c = 0.241

for δ = 0, and is gapped everywhere else in theJ2–δ plane. There is a disorder line,
2J2 + δ = 1, such that the peak in the structure factorS(q) is at qmax = π to the left of
the line, and decreases fromπ to π/2 with increasingJ2 to the right of the line (figure 4).
Further, the correlation lengthξ goes through a minimum on this line. (We have borrowed
the term ‘disorder line’ from the language of classical statistical mechanics [20].)

In the spin-1 case (figure 3), the phase diagram is more complex. There is a solid line
marked A which runs from(0, 0.25) to about(0.22± 0.02, 0.20± 0.02) shown by a cross.
Within our numerical accuracy, the gap is zero on this line and the correlation lengthξ

is as large as the system sizeN . The rest of the ‘phase’ diagram is gapped. However,
the gapped portion can be divided into different regions characterized by other interesting
features. On the dotted lines marked B, the gap is finite. Althoughξ goes through a
maximum when we cross B in going from region II to region I or from region III to region
IV, its value is much smaller thanN . There is a dashed line C extending from(0.65, 0.05)
to about(0.73, 0) on which the gap appears to be zero (to numerical accuracy), andξ is
very large but not as large asN . In regions II and III, the ground state for anopenchain
has a fourfold degeneracy (consisting ofS = 0 andS = 1), whereas it is non-degenerate in
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Figure 3. The ‘phase’ diagram for the spin-1 chain. The solid line A extending from(0, 0.25)
up to the cross is gapless; the rest of the diagram is gapped. On the dotted lines B, the gap is
finite. The dashed line C close to(0.73, 0) is ‘gapless’. The ground state for an open chain has
a fourfold degeneracy in regions II and III, while it is unique in regions I and IV. The straight
line D satisfying 2J2 + δ = 1 extends from(0, 1) to about(0.432, 0.136). Regions II and III
are separated by line E which goes down to about(0.39, 0). Across D and E, the peak in the
structure factor decreases fromπ (the Ńeel phase) in regions I and II to less thanπ (the spiral
phase) in regions III and IV. The positions of all the points have an uncertainty of±0.01 unless
stated otherwise.

Figure 4. A plot of qmax (in degrees) versusJ2 at δ = 0 for spin-12 .

regions I and IV withS = 0. The dashed line marked D is defined by 2J2 + δ = 1, has an
exactly dimerized ground state, and extends from(0, 1) to about(0.432, 0.136). The line
E separating regions II and III begins at about(0.39, 0) and extends up to the region V. In
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regions I and II, the peak in the structure factor is atπ (the Ńeel phase), while in regions
III and IV, the structure factor peaks at less thanπ (the spiral phase). We will comment on
all of these features of the ‘phase’ diagrams below.

Figure 5. The dependence of the gap onJ2 at δ = 0 for spin-1.

2.1. The frustrated spin chain (the lineδ = 0)

For spin-12, the system is gapless and has a unique ground state for weak frustration, i.e.,
0 < J2 < J2c = 0.241. BeyondJ2c, the system is gapped and has two ground states [13];
these are spontaneously dimerized [21].

For spin-1, the system is gapped for allJ2 except for the ‘gapless’ point at(0.73, 0).
For reasons explained in section 3, this ‘gapless’ point is quite unexpected. So we examine
that point in more detail. Figure 5 shows a plot of the gap versusJ2 for δ = 0. It is non-
monotonic and is ‘gapless’ at aboutJ2 = 0.73. In regions II and III, i.e., forJ2 6 0.735,
the open-chain ground state is found to be fourfold degenerate. By comparing the energies
of the low-lying states in sectors withSz = 0, 1 and 2, we find that the four ground states
haveS = 0 and 1. We therefore define the gap as the energy difference between the first
state in theSz = 0 sector and thesecondstate withSz = 1, since the gap to the first state
with Sz = 1 is zero. This is the correct definition of the gap since the finite ground-state
degeneracy arising from the end states (an artifact of the open boundary conditions) does
not contribute to thermodynamic properties. In region IV, i.e., forJ2 > 0.735, the ground
state is found to be unique withS = 0. So the gap is defined as the energy difference
between the first states in theSz = 0 andSz = 1 sectors. In all cases, we extrapolate the
gap1 to infinite system size by fitting it toN using the form1 = A + B/Nα, and finding
the best possible values ofA, B andα for eachJ2 [22].
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Figure 6. The structure factorS(q) versusq for J2 = 0.71, 0.72, 0.725 and 0.735 atδ = 0 for
spin-1.

Figure 6 is a plot of the static structure factorS(q) versusq at four values ofJ2 in
the neighbourhood of 0.73 obtained from open-spin-1-chain studies with 150 sites. For
J2 between 0.725 and 0.735, we see a pronounced peak at aboutqmax = 112◦. The peak
decreases in height and becomes broader as one moves away from this interval. We estimate
the maximum value ofξ to be about 60 sites. It also decreases rapidly as we move away
from that interval. Interestingly, Tonegawaet al [3] did find a pronounced peak inS(q) at
J2 = 0.7, although they did not investigate it further.

It is natural to speculate that(0.73, 0) lies close to some critical point which exists in a
bigger parameter space of spin-1 chains. We believe that the appropriate critical point may
be the one discussed in references [15, 16]. Sutherland exactly solves a spin-1 chain which
has a nn biquadratic interaction of the form

H =
∑

i

[Si · Si+1 + β(Si · Si+1)
2] (2)

with β = 1, and finds that there are gapless modes atq = 0 and±120◦ [15]. This implies
a peak in the structure factor atq = 120◦ which is not very far from the value that we
observe numerically. Affleck [16] further argues that the long-distance physics of this model
is described by a conformal field theory with SU(3) symmetry [23].

2.2. Ground-state degeneracy

For spin-12, the ground state is always unique except on the lineδ = 0 andJ2 > 0.241; for
J2 > 0.241, the ground state is twofold degenerate.

For δ < 0.25 andJ2 = 0, the spin-1 chain is known to exhibit a ‘hidden’ Z2 × Z2

symmetry breaking described by a non-local order parameter [2, 24]. This leads to a fourfold
degeneracy of the ground state for the open chain. The degeneracy may be understood in
terms of spin-12 degrees of freedom living at the ends of the open chain whose mutual
interaction decreases exponentially with chain length [25]. We have observed this ground-
state degeneracy at all points in regions II and III in figure 2, where the gap between the
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singlet and triplet states vanishes exponentially with increasing chain length. In regions I
and IV, the ground state is unique. The situation is reminiscent of the Z2 × Z2 symmetry
breaking mentioned above. However, we have not yet directly studied the non-local order
parameter using the DMRG method.

2.3. The structure factorS(q)

We have examined the equal-time two-spin correlation functionC(r) = 〈S0 ·Sr〉, as well as
its Fourier transformS(q). Since there is no long-range order anywhere in theJ2–δ plane
(except for algebraic order on the lines A in figures 2 and 3),S(q) generally has a broad
peak at someqmax .

For spin-12, qmax is pinned atπ in region I (the Ńeel phase), decreases fromπ (near
the straight line B) toπ/2 (near the curve C found numerically) in region II (the spiral
phase), and is pinned atπ/2 in region III (↑↑↓↓). These features are found by studying the
behaviour ofS(q) on all of the points marked in figure 2. We assign a point to the↑↑↓↓
‘phase’ if the sign ofC(r) alternates as++−− for 40 consecutive sites in a 100-site chain.

For spin-1, in regions I and II in figure 2,qmax is pinned atπ , while in regions III and
IV, qmax < π . Above the curve ABC, the crossover from the Néel to the spiral ‘phase’
presumably occurs across the straight line D given by 2J2 + δ = 1 (see below). Below
ABC, the crossover has been determined purely numerically and seems to occur across the
line indicated as E in figure 2. The region of intersection between the crossovers from the
Néel to the spiral phase and from fourfold degeneracy to a unique ground state is a small
‘hole’ (region V) in the ‘phase’ diagram centred about the point(0.435, 0.12). Points in
this ‘hole’ turned out to be extremely difficult to study using the DMRG method because
of convergence difficulties with increasing chain length. We have not shown the↑↑↓↓
‘phase’ in the diagram for spin-1. However, we do find that the boundary of this phase for
spin-1 is closer to the large-S boundary (given below as 4J2 = (1− δ2)/δ) than for spin-12.

Although one can easily show that the system must be in the↑↑↓↓ phase ifδ = 1, our
numerical results show for the first time that the↑↑↓↓ phase also extends to the region
δ < 1. This agrees with the semiclassical arguments presented in section 3.

2.4. Disorder lines

For spin-12, the straight line B (2J2 + δ = 1) indicated in figure 2 can be shown to have a
dimerized state as the exact ground state. It is easy to show that a dimerized state of the
form

ψ = [1, 2][3, 4] · · · [N − 1, N ] (3)

where [i, j ] denotes the normalized singlet combination of the spins on sitesi and j , is
an eigenstate of the Hamiltonian on that line. To prove that (3) is the ground state, we
decompose the Hamiltonian as

H =
∑

i

Hi (4)

where each of theHi only acts on a cluster of three neighbouring sites. Next, we numerically
show that (3) is a ground state of each of theHi , and is therefore a ground state ofH by
the Rayleigh–Ritz variational principle.

For spin-1, the above proof thatψ in equation (3) is the ground state holds only between
δ = 1 andδ = 1/3 [26], where each of theHi is a three-cluster Hamiltonian. Forδ < 1/3
along the disorder line,ψ in (3) is no longer the ground state of any of the three-cluster
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HamiltoniansHi . But we can construct a four-clusterHi satisfying (4) such thatψ in (3)
can be numerically shown to be a ground state of each of theHi . This allows us to prove
that ψ in (3) is the ground state ofH up to a point which is further down the line D. By
repeating this procedure with bigger and bigger cluster sizesn, we can show thatψ in (3) is
the ground state down to aboutδ = 0.136. At that value ofδ, the cluster sizen is as large
as the largest system sizes that we have studied by the DMRG method. Hence the argument
that (3) is the ground state could not be continued further. The difficulty is augmented by
the fact that belowδ = 0.136, we have the ‘hole’ (region V) where computations are not
convergent. Since the segment of the straight line from the point(0, 1) up to the ‘hole’
has an exactly known ground state with an extremely short correlation length (essentially,
one site), and since there is a crossover from a Néel to a spiral ‘phase’ across the line, we
choose to call it a disorder line just as in the spin-1

2 case [13].
Our DMRG studies show that the disorder line D does not extend below the ‘hole’

region; instead a new line E emerges as the disorder line. It is worthwhile noting that the
line E is found only numerically, unlike line D which is obtained analytically.

Figure 7. The gap1 versusJ for coupled spin chains (δ = 1). Spin-12 and spin-1 data are
indicated by crosses and circles respectively.

2.5. Coupled spin chains(δ = 1)

For δ = 1, we get two coupled spin chains (also called a spin ladder) as can be seen in
figure 1; the interchain coupling is 2 and the intrachain coupling isJ2. We have scaled the
intrachain coupling to 1, and have varied the interchain couplingJ in these scaled units.
We have studied the dependence of the gap1 and the two-spin correlation functionC(r)

on the interchain couplingJ . We have plotted1 versusJ for both spin-12 and spin-1 in
figure 7.

For spin-12, we find that the system is gapped for any non-zero value of the interchain
coupling J , although the gap vanishes asJ → 0. We find that the gap increases and
correspondingly the correlation length decreases with increasingJ .
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Figure 8. THe two-spin correlation functionC(r) versusr for coupled spin-1 chains with
J = 0.286.

For spin-1, we find the somewhat surprising result that both the gap and the correlation
lengthξ are fairly large for moderate values ofJ . Note that the variation of the gap with
J for spin-1 (shown as circles) is much less than that for spin-1

2 (crosses). Figure 8 shows
the correlation functionC(r) as a function ofr for J = 0.286 for spin-1. This data are for
an open ladder with 150 sites, and are consistent with a value ofξ which is much larger
than that found in the spin-1

2 case. It would be useful to understand the reason for the
large values ofξ for the spin-1 ladder, perhaps in terms of some variational wave functions
analogous to the resonating-valence-bond wave functions for the spin-1

2 ladder [27].

3. NLSM field theories of antiferromagnetic spin chains

3.1. TheJ2–δ model

Briefly, the field theoretic analysis of spin chains with the inclusion ofJ2 andδ proceeds as
follows. In theS → ∞ limit, a classical treatment (explained briefly in the next subsection)
shows that the ground state of the model is in the Néel phase for 4J2 < 1 − δ2, in a spiral
phase for 1− δ2 < 4J2 < (1 − δ2)/δ, and in a ‘↑↑↓↓’ phase for(1 − δ2)/δ < 4J2 [28]
(figure 9). These three phases differ as follows. In the classical ground state, all of the
spins can be shown to lie in a plane. Let us define the angle between spinsSi andSi+1 to
be θ1 if i is odd andθ2 if i is even. In the Ńeel phase,θ1 = θ2 = π . In the spiral phase,
θ1 = θ2 = cos−1(−1/4J2) if δ = 0. In the↑↑↓↓ phase,θ1 = π andθ2 = 0.

To the next order in 1/S, one derives a semiclassical field theory to describe the long-
wavelength low-energy excitations. The field theory in the Néel phase is given by an
O(3) NLSM with a topological term [5, 6]. The field variable is a unit vectorφ with the
Lagrangian density

L = 1

2cg2
φ̇

2 − c

2g2
φ′2 + θ

4π
φ · φ′ × φ̇ (5)
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Figure 9. The classical phase diagram of the spin chain in theJ2–δ plane.

wherec = 2S(1 − 4J2 − δ2)1/2 is the spin-wave velocity,g2 = 2/[S(1 − 4J2 − δ2)1/2] is
the coupling constant, andθ = 2πS(1 − δ) is the coefficient of the topological term. Note
that θ is independent ofJ2 in the NLSM. (Time and space derivatives are denoted by a dot
and a prime respectively.) Forθ = π mod 2π andg2 less than a critical value, the system
is gapless and is described by a conformal field theory with an SU(2) symmetry [6, 16].
For any other value ofθ , the system is gapped. ForJ2 = δ = 0, one therefore expects that
integer-spin chains should have a gap while half-integer-spin chains should be gapless. This
is known to be true even for small values ofS like 1/2 (analytically) and 1 (numerically)
although the field theory is only derived for largeS. In the presence of dimerization, one
expects a gapless system at certain special values ofδ. For S = 1, the special value is
predicted to beδc = 0.5. We see that theexistenceof a gapless point is correctly predicted
by the NLSM. However, according to the DMRG results,δc is at 0.25 for J2 = 0 [2] and
decreases withJ2 as shown in figure 3. These deviations from field theory are probably
due to higher-order corrections in 1/S which have not been studied analytically so far.

In the spiral phase, it is necessary to use a different NLSM which is known forδ = 0
[8, 9]. The field variable is now an SO(3) matrix R and the Lagrangian density is

L = 1

2cg2
tr(ṘTṘP0) − c

2g2
tr(R′ TR′P1) (6)

where c = S(1 + y)
√

1 − y2/y, g2 = 2
√

(1 + y)/(1 − y)/S with 1/y = 4J2, and P0

andP1 are diagonal matrices with diagonal elements(1, 1, 2y(1 − y)/(2y2 − 2y + 1)) and
(1, 1, 0) respectively. Note that there is no topological term; indeed, none is possible since
52(SO(3)) = 0 in contrast to52(S

2) = Z for the NLSM in the Ńeel phase. Hence there is
no apparent difference between integer- and half-integer-spin chains in the spiral phase. A
one-loop renormalization group [8] and large-N analysis [9] indicate that the system should
have a gap for all values ofJ2 and S, and that there is no reason for a particularly small
gap at any special value ofJ2. A similar conclusion is obtained from a bosonic mean-field
theory analysis of the frustrated spin chain [29]. The ‘gapless’ point atJ2 = 0.73 for spin-1
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is therefore surprising.
In the ↑↑↓↓ phase, the NLSM is known forδ = 1, i.e., for the spin ladder. The

Lagrangian is the same as in (5), withc = 4S[J2(J2 + 1)]1/2 and g2 = (1 + 1/J2)
1/2/S.

There isno topological term for any value ofS, and the model is therefore gapped.
Note that the ‘phase’ boundary between the Néel and the spiral phase for spin-1 is

closer to the classical (S → ∞) boundary 4J2 = 1 − δ2 than for spin-12. For instance, the
crossover from the Ńeel to the spiral phase occurs, forδ = 0, at J2 = 0.5 for spin-12, at
0.39 for spin-1, and at 0.25 classically.

3.2. The frustrated and biquadratic spin-1 models

For spin-1, there is a striking similarity between the ground-state properties of our model (1)
as a function ofJ2 (with δ = 0) and the biquadratic model (2) as a function of (positive)β

[30]. For J2 < 0.39 andβ < 1/3, both models are in the Ńeel phase and are gapped. For
J2 > 0.39 andβ > 1/3, the two models are in the spiral phase and are generally gapped;
however, model (1) is ‘gapless’ forJ2 = 0.73 while model (2) is gapless forβ = 1. We
can qualitatively understand the crossover from the Néel to the spiral phase (butnot the
gaplessness at a particular value ofJ2 or β) through the following classical argument. Let
us set the magnitudes of the spins equal to 1 and define the angle between spinsSi and
Si+n to be nθ . The angleθ can be obtained by minimizing cosθ + J2 cos 2θ in (1), and
cosθ + β cos2 θ in (2). This gives us a Ńeel phase (θ = π ) if J2 6 1/4 andβ 6 1/2 in the
two models, and a spiral phase for larger values ofJ2 andβ with θ = cos−1(−1/4J2) and
θ = cos−1(−1/2β) respectively. The actual crossover points from the Néel to the spiral
phase are different for spin-1 to these classical values.

4. Summary

To conclude, we have studied a two-parameter ‘phase’ diagram for the ground state of
isotropic antiferromagnetic spin-1

2 and spin-1 chains. The spin-1 diagram is considerably
more complex than the corresponding spin-1

2 chain with surprising features like a ‘gapless’
point inside the spiral ‘phase’; this point could be close to a critical point discussed earlier in
the literature [15, 16]. It would be interesting to establish this more definitively. Our results
show that frustrated spin chains with small values ofS exhibit features not anticipated from
large-S field theories.

After this paper was accepted for publication, we learnt of a more detailed DMRG study
of the frustrated spin-1 chain [31], which leads to somewhat different results for the various
regions on the lineδ = 0.
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