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Abstract. The ground-state ‘phase’ diagrams and some low-energy properties of isotropic
antiferromagnetic spir%— and spin-1 chains with a next-nearest-neighbour exchaagand an
alternations of the nearest-neighbour exchanges have been compared for the first time using
the density matrix renormalization group method. In the s}aichain, the system is gapless for

§ = 0andJy < Jo. = 0.241, and is gapped everywhere else in thes plane. AtJy., for
small §, the gap increases @¢, wherea = 0.667+ 0.001. 2/ + § = 1 is a disorder line. To

the left of this line, the structure factdt(q) peaks atg,,., = 7 (the Neel ‘phase’), while to

the right, g, decreases fromr to /2 (the spiral ‘phase’) ad> increases. We also discover

a ‘t1] | phase’ for large values of botlh, ands. In the spin-1 case, we find a line running
from a gapless point at/z, §) = (0,0.25+ 0.01) up to a ‘gapless’ point at0.73 + 0.005 0)

such that the open-chain ground state is fourfold degenerate below the line and is unique above
it. There is a disorder line in this case also and it has the same equation as in tl#csm’e,—

but the line ends at abodt= 0.136. Similarly to the spin% case, to the left of this line, the
peak in the structure factor is at (the Neel ‘phase’), while to the right of the line, it is at less
thanx (the spiral ‘phase’). Fos = 1, the system corresponds to a spin ladder and the system
is gapped for all values of the interchain coupling for both s%)iand spin-1 ladders.

1. Introduction

Antiferromagnetic spin-1 chains received fresh attention [1-4] after Haldane conjectured
that integer-spin chains with a nearest-neighbour (nn) exchange should have a gap while
half-integer-spin chains should be gapless. This observation was based on a non-linear
sigma model (NLSM) field theory description of the low-energy excitations [5]. The NLSM
approach can be generalized to include other features such as dimerization (an alternation
8 of the nn exchanges) and a next-nearest-neighbour (nnn) exchiaf@le and it leads to
interesting predictions. For the sp@model, it predicts that the system should be gapless
for J, < Jp. for § = 0, and should be gapped for all non-ze¥o On the other hand,

the theory predicts that the spin-1 model should exhibit a gapless line id,tieplane

for non-zeros. If the nnn exchange is large enough, the spin chains go over froraeh N
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‘phase’ [7] to a spiral ‘phase’ and a different kind of NLSM field theory becomes applicable
[8, 9] which predicts a gap foall values of the spin.

While the spin% chain has been extensively studied using a variety of analytical and
numerical techniques [10], the corresponding spin-1 chain has been studied in much less
detail. Real spiré— Heisenberg systems with both dimerization and frustration are now
known [11]. However, the spin-1 analogues are yet to be synthesized. In what follows,
we demonstrate that the spin-1 system exhibits a richer ‘phase’ diagram than th%a spin-
system. It is hoped that this will provide motivation for experimental realizations of such
higher-spin systems.
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Figure 1. A schematic picture of the spin chain given by equation (1).

In this paper, we present a detailed comparative study of spin-1 ano% spiains with
both dimerization and frustration in thg—3$ plane using the density matrix renormalization
group (DMRG) method [12-14]. A major surprise which we discuss is a ‘gapless’ (to
numerical accuracy) point at/> = 0.73, § = 0), in the spin-1 case, which is contrary
to the field theory expectation. We suggest that this point may be close to a critical point
which is described by a S83)-symmetric conformal field theory [15, 16]. We also discuss
a phase calledt*t| |’ which arises if bothJ, ands are large. A particular case of this is
the spin ladder§ = 1), and we present some numerical results for both %parmd spin-1
ladders.

2. The DMRG method and the ‘phase’ diagram

We have studied both open and periodic chains with an even number of sites governed by
the Hamiltonian

H=Y[1- (=188 -Sis1+1Y S-Sz (N

with the limits of summation being interpreted as appropriate. We restrict our attention
to the regionJ, > 0 and 0< § < 1. We study various regions in the—§ plane using

the DMRG method which has proved to be very successful for one-dimensional quantum
systems [12-14, 17]. The interactions are shown schematically in figure 1.

The DMRG method allows us to study a few low-lying states in a sector with a given
value of the total spin componerfl,. The ground state is always the first (lowest-energy)
state in theS, = 0 sector. The accuracy of the DMRG method depends crucially on the
number of eigenstates of the density matrix, which are retained. We have worked with
m = 100 to 120 over the entird,— plane after checking that the DMRG results obtained
using these values af agree well with exact numerical diagonalizations of chains with up
to 16 sites for spin-1 [3] and 22 sites for spjnflS]. The chain lengths that we studied
varied from 150 sites fot, > 0 to 200 sites forJ, = 0. We tracked our results as a
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Figure 2. The ‘phase’ diagram for the spi@-chain in the Jo—$ plane. The line A from

(0, 0) to (0.241, 0) is gapless; the rest of the diagram is gapped. The straight line B satisfying
2J, + 8 = 1 extends all the way frong0, 1) to (0.5,0). Across B, the position of the peak

in the structure factor decreases fram(the Neel phase) in region | to less than(the spiral
phase) in region Il. Across C, the peak in the structure factor decreases from greatey2han
(the spiral phase) in region Il t®/2 in region Ill (thet1{ | ‘phase’). The two-spin correlation
function and structure factor were studied at all of the points shown in the figure.

function of N and found that convergence is reached well before 150 sites in all cases.
We find that the numerical results converge much better for open chains than for periodic
chains, a feature generic to the DMRG technique [12, 19]. Hence the data shown in figures
2 to 8 (see later), particularly for spin-1 chains, are mainly based on open-chain results.

The ‘phase’ diagrams which we obtain for sp}r&nd spin-1 chains are shown in figures
2 and 3, respectively. In the spéwease, the system is gapless from= 0 to Jo. = 0.241
for § = 0, and is gapped everywhere else in thes plane. There is a disorder line,
2J, + 8 = 1, such that the peak in the structure fact@y) is at ¢,,.. = 7 to the left of
the line, and decreases framto /2 with increasing/, to the right of the line (figure 4).
Further, the correlation length goes through a minimum on this line. (We have borrowed
the term ‘disorder line’ from the language of classical statistical mechanics [20].)

In the spin-1 case (figure 3), the phase diagram is more complex. There is a solid line
marked A which runs fronf0, 0.25) to about(0.22+ 0.02, 0.204+ 0.02) shown by a cross.
Within our numerical accuracy, the gap is zero on this line and the correlation l€ngth
is as large as the system si2e The rest of the ‘phase’ diagram is gapped. However,
the gapped portion can be divided into different regions characterized by other interesting
features. On the dotted lines marked B, the gap is finite. Althofigipes through a
maximum when we cross B in going from region Il to region | or from region Il to region
IV, its value is much smaller thaN. There is a dashed line C extending frgf65, 0.05)
to about(0.73, 0) on which the gap appears to be zero (to numerical accuracy)é asd
very large but not as large aé. In regions Il and lll, the ground state for apenchain
has a fourfold degeneracy (consistingf 0 andS = 1), whereas it is hon-degenerate in
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Figure 3. The ‘phase’ diagram for the spin-1 chain. The solid line A extending f(6n0.25)

up to the cross is gapless; the rest of the diagram is gapped. On the dotted lines B, the gap is
finite. The dashed line C close t6.73, 0) is ‘gapless’. The ground state for an open chain has

a fourfold degeneracy in regions Il and Ill, while it is unique in regions | and IV. The straight
line D satisfying 2> + § = 1 extends from(0, 1) to about(0.432 0.136). Regions Il and Ill

are separated by line E which goes down to ak@®&9, 0). Across D and E, the peak in the
structure factor decreases from(the Neel phase) in regions | and Il to less thar(the spiral

phase) in regions Ill and IV. The positions of all the points have an uncertaintd4f1 unless

stated otherwise.
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Figure 4. A plot of g, (in degrees) versus, at§ = 0 for spin-%.

regions | and IV withS = 0. The dashed line marked D is defined hjp 2 § = 1, has an
exactly dimerized ground state, and extends fr@nl) to about(0.432 0.136). The line
E separating regions Il and Ill begins at abdu39, 0) and extends up to the region V. In
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regions | and I, the peak in the structure factor israfthe Neel phase), while in regions
Il and 1V, the structure factor peaks at less tharfthe spiral phase). We will comment on
all of these features of the ‘phase’ diagrams below.

Gap

Figure 5. The dependence of the gap dnats = O for spin-1.

2.1. The frustrated spin chain (the lide= 0)

For spin%, the system is gapless and has a unique ground state for weak frustration, i.e.,
0 < J» < Jo. = 0.241. BeyondJ,., the system is gapped and has two ground states [13];
these are spontaneously dimerized [21].

For spin-1, the system is gapped for d@}l except for the ‘gapless’ point &0.73, 0).
For reasons explained in section 3, this ‘gapless’ point is quite unexpected. So we examine
that point in more detail. Figure 5 shows a plot of the gap versu®r § = 0. It is non-
monotonic and is ‘gapless’ at aboudf = 0.73. In regions Il and lll, i.e., for/, < 0.735,
the open-chain ground state is found to be fourfold degenerate. By comparing the energies
of the low-lying states in sectors witfy = 0, 1 and 2, we find that the four ground states
haveS = 0 and 1. We therefore define the gap as the energy difference between the first
state in theS, = 0 sector and theecondstate withS, = 1, since the gap to the first state
with §, = 1 is zero. This is the correct definition of the gap since the finite ground-state
degeneracy arising from the end states (an artifact of the open boundary conditions) does
not contribute to thermodynamic properties. In region 1V, i.e., for- 0.735, the ground
state is found to be unique with = 0. So the gap is defined as the energy difference
between the first states in tte = 0 and S, = 1 sectors. In all cases, we extrapolate the
gap A to infinite system size by fitting it t&V using the formA = A + B/N¢, and finding
the best possible values df, B and« for eachJ, [22].
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Figure 6. The structure factof(q) versusg for Jo = 0.71, 072, 0725 and 0735 até = O for
spin-1.

Figure 6 is a plot of the static structure fact®fg) versusqg at four values ofJ; in
the neighbourhood of.@3 obtained from open-spin-1-chain studies with 150 sites. For
Jo between 0725 and 0735, we see a pronounced peak at abgt, = 112. The peak
decreases in height and becomes broader as one moves away from this interval. We estimate
the maximum value of to be about 60 sites. It also decreases rapidly as we move away
from that interval. Interestingly, Tonegavea al [3] did find a pronounced peak ifi(g) at
J> = 0.7, although they did not investigate it further.

It is natural to speculate th&d.73, 0) lies close to some critical point which exists in a
bigger parameter space of spin-1 chains. We believe that the appropriate critical point may
be the one discussed in references [15, 16]. Sutherland exactly solves a spin-1 chain which
has a nn biquadratic interaction of the form

H= Z[Si « Sip1+ B(S; - Si+1)2] 2

with 8 = 1, and finds that there are gapless modeg &t0 and+120° [15]. This implies

a peak in the structure factor at= 120> which is not very far from the value that we
observe numerically. Affleck [16] further argues that the long-distance physics of this model
is described by a conformal field theory with &Y symmetry [23].

2.2. Ground-state degeneracy

For spin—%, the ground state is always unique except on thedire0 andJ, > 0.241; for
Jo > 0.241, the ground state is twofold degenerate.

For§ < 0.25 andJ, = 0, the spin-1 chain is known to exhibit a ‘hiddens % Z,
symmetry breaking described by a non-local order parameter [2, 24]. This leads to a fourfold
degeneracy of the ground state for the open chain. The degeneracy may be understood in
terms of spin% degrees of freedom living at the ends of the open chain whose mutual
interaction decreases exponentially with chain length [25]. We have observed this ground-
state degeneracy at all points in regions Il and Ill in figure 2, where the gap between the
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singlet and triplet states vanishes exponentially with increasing chain length. In regions |
and IV, the ground state is unique. The situation is reminiscent of the Z, symmetry
breaking mentioned above. However, we have not yet directly studied the non-local order
parameter using the DMRG method.

2.3. The structure factof(g)

We have examined the equal-time two-spin correlation funafigr) = (Sp- S,), as well as
its Fourier transformsS(q). Since there is no long-range order anywhere in s plane
(except for algebraic order on the lines A in figures 2 andsS3y,) generally has a broad
peak at some,,.. -
For spin%, gmax 1S pinned atr in region | (the Neel phase), decreases from(near
the straight line B) tar/2 (near the curve C found numerically) in region Il (the spiral
phase), and is pinned at/2 in region Il (+1] ). These features are found by studying the
behaviour ofS(g) on all of the points marked in figure 2. We assign a point tothe |
‘phase’ if the sign ofC (r) alternates ag-+ —— for 40 consecutive sites in a 100-site chain.
For spin-1, in regions | and Il in figure 2,,,, is pinned atr, while in regions Il and
IV, gnax < m. Above the curve ABC, the crossover from thédll to the spiral ‘phase’
presumably occurs across the straight line D given By 26 = 1 (see below). Below
ABC, the crossover has been determined purely numerically and seems to occur across the
line indicated as E in figure 2. The region of intersection between the crossovers from the
Néel to the spiral phase and from fourfold degeneracy to a unique ground state is a small
‘hole’ (region V) in the ‘phase’ diagram centred about the p@hé35 0.12). Points in
this ‘hole’ turned out to be extremely difficult to study using the DMRG method because
of convergence difficulties with increasing chain length. We have not showrt thg,
‘phase’ in the diagram for spin-1. However, we do find that the boundary of this phase for
spin-1 is closer to the larg&-boundary (given below as/4 = (1 — §2)/5) than for spin%.
Although one can easily show that the system must be intthi| phase ifs = 1, our
numerical results show for the first time that the || phase also extends to the region
8§ < 1. This agrees with the semiclassical arguments presented in section 3.

2.4. Disorder lines

For spini, the straight line B (Z; + 8 = 1) indicated in figure 2 can be shown to have a
dimerized state as the exact ground state. It is easy to show that a dimerized state of the
form

U=I[1.2][3.4]---[N -1, N] ®)

where [, j] denotes the normalized singlet combination of the spins on sitewd j, is
an eigenstate of the Hamiltonian on that line. To prove that (3) is the ground state, we
decompose the Hamiltonian as

H=)YH (4)

where each of thél; only acts on a cluster of three neighbouring sites. Next, we numerically
show that (3) is a ground state of each of thg and is therefore a ground state 8f by
the Rayleigh—Ritz variational principle.

For spin-1, the above proof thditin equation (3) is the ground state holds only between
§ =1 ands = 1/3 [26], where each of théf; is a three-cluster Hamiltonian. Fér< 1/3
along the disorder liney in (3) is no longer the ground state of any of the three-cluster
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HamiltoniansH;. But we can construct a four-clustéf; satisfying (4) such thap in (3)
can be numerically shown to be a ground state of each oftheThis allows us to prove
that Y in (3) is the ground state off up to a point which is further down the line D. By
repeating this procedure with bigger and bigger cluster sizege can show thap in (3) is
the ground state down to abodit= 0.136. At that value of, the cluster size is as large
as the largest system sizes that we have studied by the DMRG method. Hence the argument
that (3) is the ground state could not be continued further. The difficulty is augmented by
the fact that belows = 0.136, we have the ‘hole’ (region V) where computations are not
convergent. Since the segment of the straight line from the [go6irtt) up to the ‘hole’
has an exactly known ground state with an extremely short correlation length (essentially,
one site), and since there is a crossover froméaINo a spiral ‘phase’ across the line, we
choose to call it a disorder line just as in the séinase [13].

Our DMRG studies show that the disorder line D does not extend below the ‘hole’
region; instead a new line E emerges as the disorder line. It is worthwhile noting that the
line E is found only numerically, unlike line D which is obtained analytically.

T T T T T T T T T
1.0
0.8 ]
< 0.6 -
<
0.4F )
0.2F .
) 1 ) | L I 1 | ) ]
0 0.2 0.4 0.6 0.8 1.0

Figure 7. The gapA versusJ for coupled spin chainss(= 1). Spin% and spin-1 data are
indicated by crosses and circles respectively.

2.5. Coupled spin chaing = 1)

For s = 1, we get two coupled spin chains (also called a spin ladder) as can be seen in
figure 1; the interchain coupling is 2 and the intrachain coupling,iswe have scaled the
intrachain coupling to 1, and have varied the interchain coupling these scaled units.
We have studied the dependence of the gapnd the two-spin correlation functio@i(r)
on the interchain coupling. We have plottedA versusJ for both spin% and spin-1 in
figure 7.

For spin%, we find that the system is gapped for any non-zero value of the interchain
coupling J, although the gap vanishes ds— 0. We find that the gap increases and
correspondingly the correlation length decreases with increaking
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Figure 8. THe two-spin correlation functiorC (r) versusr for coupled spin-1 chains with
J = 0.286.

For spin-1, we find the somewhat surprising result that both the gap and the correlation
length& are fairly large for moderate values df Note that the variation of the gap with
J for spin-1 (shown as circles) is much less than that for %p(nrosses). Figure 8 shows
the correlation functiorC () as a function of- for J = 0.286 for spin-1. This data are for
an open ladder with 150 sites, and are consistent with a valgevdiich is much larger
than that found in the spié-case. It would be useful to understand the reason for the
large values of for the spin-1 ladder, perhaps in terms of some variational wave functions
analogous to the resonating-valence-bond wave functions for the%s]piﬂder [27].

3. NLSM field theories of antiferromagnetic spin chains

3.1. TheJ>—§ model

Briefly, the field theoretic analysis of spin chains with the inclusion-0&nds proceeds as
follows. In theS — oo limit, a classical treatment (explained briefly in the next subsection)
shows that the ground state of the model is in tleeNohase for 4 < 1 — 82, in a spiral
phase for 1- 6% < 4J, < (1 —6%)/8, and in a t1|]’ phase for(1 — 82)/8 < 4J, [28]
(figure 9). These three phases differ as follows. In the classical ground state, all of the
spins can be shown to lie in a plane. Let us define the angle betweenSpamsl S; 1 to

be 6, if i is odd andd, if i is even. In the Mel phased; = 6, = 7. In the spiral phase,

0p = 60, = cos Y(—1/4J,) if § =0. In thet1] | phasep, = 7 andb, = 0.

To the next order in AS, one derives a semiclassical field theory to describe the long-
wavelength low-energy excitations. The field theory in theeNphase is given by an
O(3) NLSM with a topological term [5, 6]. The field variable is a unit vectomwith the
Lagrangian density

1 .2 ¢ p, 0 ;o
ﬁ_?gzqs_fgz(ﬁ +E¢ P x @ (%)
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Figure 9. The classical phase diagram of the spin chain in#hé plane.

wherec = 25(1 — 4J, — §2)Y/2 is the spin-wave velocityg? = 2/[S(1 — 4J, — §5)¥?] is
the coupling constant, artl= 27 S(1 — §) is the coefficient of the topological term. Note
thato is independent of; in the NLSM. (Time and space derivatives are denoted by a dot
and a prime respectively.) Fér= 7 mod 2r andg? less than a critical value, the system
is gapless and is described by a conformal field theory with a2Ssymmetry [6, 16].
For any other value of, the system is gapped. Fds = § = 0, one therefore expects that
integer-spin chains should have a gap while half-integer-spin chains should be gapless. This
is known to be true even for small values $fike 1/2 (analytically) and 1 (numerically)
although the field theory is only derived for large In the presence of dimerization, one
expects a gapless system at certain special valués &for S = 1, the special value is
predicted to b&S. = 0.5. We see that thexistenceof a gapless point is correctly predicted
by the NLSM. However, according to the DMRG resulis,is at 025 for J, = 0 [2] and
decreases witly, as shown in figure 3. These deviations from field theory are probably
due to higher-order corrections irf & which have not been studied analytically so far.

In the spiral phase, it is necessary to use a different NLSM which is know# 00
[8, 9]. The field variable is now an SB) matrix R and the Lagrangian density is

L= chgztr(RTRPo) - %gztr(R’TR’Pl) (6)
wherec = S(1+ y)/1—y2/y, g2 = 2J/(A+y)/(L—y)/S with 1/y = 4J,, and P,
and P, are diagonal matrices with diagonal elemefitsl, 2y(1 — y)/(2y? — 2y + 1)) and
(1, 1, 0) respectively. Note that there is no topological term; indeed, none is possible since
I1,(SO(3)) = 0 in contrast tol1,(S?) = Z for the NLSM in the Neel phase. Hence there is
no apparent difference between integer- and half-integer-spin chains in the spiral phase. A
one-loop renormalization group [8] and largeanalysis [9] indicate that the system should
have a gap for all values of, and S, and that there is no reason for a particularly small
gap at any special value db. A similar conclusion is obtained from a bosonic mean-field
theory analysis of the frustrated spin chain [29]. The ‘gapless’ poiit at 0.73 for spin-1
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is therefore surprising.

In the 1] phase, the NLSM is known fo8 = 1, i.e., for the spin ladder. The
Lagrangian is the same as in (5), with= 4S[J>(J> + 1)]¥2 and g? = (1 + 1/J2)%?/S.
There isno topological term for any value of, and the model is therefore gapped.

Note that the ‘phase’ boundary between théeNand the spiral phase for spin-1 is
closer to the classicalS(— oc) boundary 4, = 1 — 82 than for spin%. For instance, the
crossover from the Bl to the spiral phase occurs, fdr= 0, at J, = 0.5 for spin%, at
0.39 for spin-1, and at.@5 classically.

3.2. The frustrated and biquadratic spin-1 models

For spin-1, there is a striking similarity between the ground-state properties of our model (1)
as a function of/, (with § = 0) and the bigquadratic model (2) as a function of (positige)
[30]. For J; < 0.39 andB < 1/3, both models are in theé&¢l phase and are gapped. For
Jo > 0.39 andg > 1/3, the two models are in the spiral phase and are generally gapped;
however, model (1) is ‘gapless’ faf, = 0.73 while model (2) is gapless fg¢ = 1. We

can qualitatively understand the crossover from theelNo the spiral phase (buiot the
gaplessness at a particular valueJgfor 8) through the following classical argument. Let

us set the magnitudes of the spins equal to 1 and define the angle betweel$;spirs

S+ to bend. The angled can be obtained by minimizing cés+ J,cos? in (1), and

cosh + B cog 6 in (2). This gives us a Bel phased = ) if J» < 1/4 andp < 1/2 in the

two models, and a spiral phase for larger valueg-oéind 8 with 6 = cos*(—1/4J,) and

6 = cos1(—1/2B) respectively. The actual crossover points from theeNto the spiral
phase are different for spin-1 to these classical values.

4. Summary

To conclude, we have studied a two-parameter ‘phase’ diagram for the ground state of
isotropic antiferromagnetic spigl—and spin-1 chains. The spin-1 diagram is considerably
more complex than the corresponding séinhain with surprising features like a ‘gapless’
point inside the spiral ‘phase’; this point could be close to a critical point discussed earlier in
the literature [15, 16]. It would be interesting to establish this more definitively. Our results
show that frustrated spin chains with small values @xhibit features not anticipated from
large-S field theories.

After this paper was accepted for publication, we learnt of a more detailed DMRG study
of the frustrated spin-1 chain [31], which leads to somewhat different results for the various
regions on the liné = 0.
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